Advancing Lunar & Solar System Science & Exploration Through a Lunar Sample Return Campaign

Clive R. Neal1 & Sam Lawrence2
Lunar Exploration Analysis Group
neal.1@nd.edu, samuel.j.lawrence@nasa.gov

1 = University of Notre Dame
2 = NASA Johnson Space Center
We need more samples than Apollo, Luna, & Lunar Meteorites

Subsequent missions have shown that the sample return sites were not ideal for exploring the Moon.

Lunar Terranes
- Apollo sites close to terrane boundaries.
- Samples contain PKT signature.

- Apollo sample collection is not representative of the lunar compositional diversity.

New Lunar Lithologies

How do these new Rock Types (not represented in the sample collection) revise models of lunar evolution?

Pure Anorthosite or PAN: Kaguya

New Lunar Lithologies

How do these new Rock Types (not represented in the sample collection) revise models of lunar evolution?

Olivine, Orthopyroxene, and Mg-Spinel-rich lithologies (“OOS”)

Pieters et al. (2011) JGR, 116, E00G08

Olivine-rich mantle (?) deposits

Chandrayaan-1: M3. Moscoviense Basin
Non-Mare Silicic Magmatism

- Enhanced Th;
- Explosive volcanism;
- Christensen frequency (CF) value (DIVINER) indicates silica-rich lithologies.

Can such large Si-rich constructs be formed through SLI?

Recent Volcanic Activity

“Recent” volcanic eruptions ~ 1 Ga.

Recent Volcanic Activity

"IMPs" - Irregular Mare Patches <100 Ma.

Images = 450 m across

Sosigenes
Aristarchus North
Maclear-1

1
6
15

18
19
22

26

Unnamed

32
33
38

Unnamed
Unnamed
Carrel-1

Ina depression in Lacus Felicitatis

What are the ages of the IMPs?
What are the source regions for these potentially "young" basalts?
Implications for the thermal history of the Moon?
What are the mechanisms of eruption?

BUTthese are also interpreted to be older (~3.5 Ga):

• Qiao et al. (2017) Geology,
Cratering Chronology

- Constraining crater chronology.
- Important for Solar System Science.
- Need unambiguous impact melt

- Was there a "cataclysm" around 3.9 Ga?
- What are the ages/fluxes of the older and younger ends of the crater count curve?

Barlow (2010) GSA Bull. 122, 644-657
Do different pyroclastic deposits of different ages indicate a consistent volatile composition of the lunar mantle?

Can these be used as a resource for human exploration?

Milliken & Li (2017) Nat. Geosci. 10, 561-565
Farside Highlands

Crustal thickness dichotomy (CoM offset from CoF)

How did the lunar crust form?

Asymmetric crustal growth on the Moon indicated by primitive farside highland materials

Makiko Ohtake¹*, Hiroshi Takeda², Tsuneo Matsunaga³, Yasuhiro Yokota³, Junichi Haruyama³, Tomokatsu Morota⁴, Satoru Yamamoto⁵, Yoshiko Ogawa⁶, Takahiro Hiroi⁷, Yuzuru Karouji⁷, Kazuto Saiki⁸ and Paul G. Lucey⁹
Ice Permafrost Around PSRs

Neutron Suppression Regions (NSRs) are found in both Permanently Shadowed Regions (PSRs) and illuminated areas, and they are not coincident with PSRs.

Possible with nearside sample return?

Future Sample Return Missions

Sample Return:

- New lithologies, including potential mantle samples.
- South Pole-Aitken Basin impact melt ("MoonRise").
- Other younger (e.g., Copernicus, Tycho) impact craters.
- Multi-ring basins (Nectaris, Imbrium, and Orientale).
- "Young" volcanic features (e.g., Ina Structure).
- Felsic domes (Gruithuisen Domes, Hansteen-Alpha, Compton-Belkovich).
- Large pyroclastic deposits.
- Cryogenic sample return - PSRs.
New Lithologies: Spinel
New Lithologies: Spinel
New Lithologies: Mantle?
New Lithologies: Mantle?
New Lithologies: PAN
New Lithologies: PAN
Felsic Igneous Complexes
Pyroclastic Deposits
Pyroclastic Deposits
Impact Melts
Impact Melts
Hydrogen Deposits

![Moon Diagram with labeled craters and features](image-url)
Hydrogen Deposits
Targeted Sample Return - farside
Technology Development

Robotic SR:

- Landers and sample return vehicles.
- Cryogenic sampling, transport, and curation.
- Rover development to survive the lunar day/night/PSRs temperature swings, sample identification, collection, and storage (including cryogenic capabilities).
- Development of a Moon Assent Vehicle to return the samples.
- These developments would have feed forward implications for Mars sample return or SR from other destinations.
Conclusions

• Private companies are developing lunar surface exploration capabilities, including sample return allowing regular access to Moon.
• Since a regular cadence of missions to the Moon would be required for private commercial companies to build a business case, we have an opportunity to change the paradigm of planetary science and exploration and implement an affordable lunar robotic program.
• A dedicated Lunar Science & Exploration Program (LSEP) Office could be established that involves the lunar community and industrial partners in mission planning and flight opportunities.
• A focused lunar program would allow NASA to be a regular customer while developing new capabilities and implementing at least some of the objectives listed in the Decadal Survey, the LEAG Exploration Roadmap, the SEM Report, etc.