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Aristarchus Overview

Why	go	there:
• Thick	(~20	m)	beds	of	pyroclastic	deposits	with	up	to	300	ppm	H2O

• Opportunity	to	return	primitive	H2O-bearing	samples	that	will	
provide	new	insight	into	lunar	mantle.

• Chance	to	test	ISRU	technologies	at	near-side	mid-latitude	
landing	site

• Previously	unsampled	silicic	lithologies (both	intrusive	and	
extrusive)

• Youngest	basalts	on	the	Moon	in	close	proximity
• Opportunity	to	sample	multiple	lithologies at	one	site
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Site Characterization: Radar 

• ~10-20 m thick based on ground-based 
radar imagery and excavation of 
pyroclastics by small craters

• Buried lava flows (spillover from Vallis 
Schröteri?) cover much of the plateau.

• Lots of 10 cm and larger cobbles mixed 
with pyroclastics.

50	km

12.6	cm	radar	image	of	Aristarchus	plateau	region
Campbell	et	al.	(2008)
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Site Characterization: Slopes 
• Slopes characterized by LOLA

• Slopes across much of pyroclastic 
blanket range from 0 to ~4 degrees.

• Local excursions above 10 degrees 
for small craters.

• Slopes on Aristarchus ejecta blanket 
range from ~2-20 degrees. 

• Slopes around the Cobra Head higher 
than 30 degrees. 

50	km

512	ppd LOLA-derived	slope	map
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Site Characterization: VNIR 

• Analysis of M3 3 µm region provides 
quantitative estimates of surface 
hydration.

• Pyroclastic deposits on the lunar 
surface likely preserve indigenous 
lunar water. 

• Water  distribution on the plateau is 
heterogeneous, with abundances 
ranging from <50 ppm to > 300 ppm 
H2O. 

50	km

Hydration	map	from	Milliken	and	Li	(2017).	Hydration	ranges	from	
<50	ppm	(dark	blue)	to	>300	ppm	(red)	H2O.	
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Site Characterization: VNIR 
• Model of Jawin et al. utilizing M3 data provides 
insight into distribution of phases in and around 
the plateau.

• Model prefers moderate-Ti orange glass end-
member  for plateau materials, but result is non-
unique and other glasses could also fit.

• Model result does support other data analyses 
(e.g., LP-GRS) showing moderate Ti abundances 
on the plateau.

• Difficult for model to address abundance and 
distribution of low-Fe silicic lithologies in the 
region. 

• Model still being updated, results could change.

50	km

Color	composite	from	Jawinet	al.	(this	meeting).	Red=olivine,	
G=orthopyroxene,	B=synthetic	orange	glass.
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Site Characterization: TIR 

• Pyroclastics have mafic CF, similar to 
surrounding mare. 

• Numerous highly silicic features consistent 
with granite/rhyolite composition: 

• Central peak of Aristarchus and portions 
ejecta (white box)

• Cobra head (red arrow)
• Väisälä crater (black arrow)
• Mons Herodotus (white arrow)
• Portions of Montes Agricola (black box)
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Diviner	CF	map	(blue	to	red	=	7.0	– 8.6	µm).	
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Site Characterization: TIR 
• Pyroclastics are apparent in Diviner 
7/3 ratio map (ratio of bands centered 
at 31 and 7.8 µm). 

• Band ratio highlights silicic features 
and separates pyroclastics from 
surrounding mare.

• Band ratio appears to correspond 
with pyroclastic blanket thickness. 
Note low ratio values in proximity of 
Vallis Schröteri, where blanket is thin.

• Likely contribution of pyroclastic 
thermophysical characteristics. 

Diviner	Band	7/3	ratio	map.	
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Young basalts  

• Crater counts indicate young (~1Ga) 
basalts south of the plateau.

• Youngest basalts on the Moon. Would 
act as new pin in lunar chronology, and 
provide new constraints for crater-
count based ages in the inner solar 
system. 

• See presentations by Sam Lawrence  
and Scott Anderson this afternoon for 
more detail.

50	km
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Pyroclastics
• Saal et al. (2008) demonstrated that 
glass beads returned by Apollo contain 
measureable indigenous H2O.  
Subsequent analyses indicate H2O 
abundances from ~20-1000 ppm. 

• Remote sensing data indicate 
regions of plateau with H2O 
abundances on roughly the same 
order.

50	km

Hauri et	al.	(2017),	Ann.	Rev.	Earth.	Planet.	Sci.
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Pyroclastics
• New work by Darby Dyar, Molly McCanta, and Tony 

Lanzirotti:
• Variable Fe oxidation states in glass beads record 

ascent and eruption conditions.
• (TOP) Loss of water from the ascending melt, as 

predicted by Rutherford et al. (2017), produces melt 
oxidation through the reaction: 4OH=H2O+H2+1.5O2, 
starting from the rim and proceeding inward

• (MIDDLE) Reduction either in the lunar vacuum or in 
the dissipating, reducing gas cloud

• (BOTTOM) Even unzoned glasses typically show a 
range of oxidation states, consistent with closure 
temperatures at varying times during the eruption 
and quenching process

50	km

Fe3+

Fe2+

Fe3+
Fe2+

28%	Fe3+
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Silicic lithologies

50	km
• Herodotus	Mons,	~180	km	NW	of	Aristarchus	Crater.	

Surrounded	by	hydrous	pyroclastics.
• Cobra	Head,	source	of	Vallis	Schröteri.
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Silicic lithologies

50	km
• Ejecta	of	Aristarchus	southwest	of	the	crater	(bright	

material).	Potential	to	sample	silicic	and	pyroclastic	
materials	at	the	same	site.	

• K/Ca	isotopes	of	a	returned	granite	clast	indicate	a	strongly	
enriched	source,	probably	separate	from	FAN.

• How	representative	are	Apollo	granites	of	lunar	silisic
sites?	Samples	skew	old	compared	to	crater	counts	of	
silicic	spots.		
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Let’s go here.

50	km

Young	basalts

Silicics+pyroclastics±basalts

Bimodal	volcanism?

My	favorite:	silicic	
volcanics +	H2O-
bearing	pyroclastics
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Exploration Strategy

CF

Think	Big
• Multi-mission	campaign	to	study	Aristarchus	crater	and	its	ejecta,	young	

basalts,	Vallis	Schröteri and	the	Cobra	Head,	pyroclastics,	and	Herodotus	Mons.

• Systematic	exploration	with	missions	of	increasing	complexity
• Multiple	rovers	with	substantial	scientific	payload	(GPR,	cameras,	

vis/IR/Raman	spectrometers,	APXS,	etc.)
• Sample	return—must	determine	highest	priority	between	

pyroclastics/silicics and	young	basalts
• Human	exploration

• Low-latency	teleroboticoperation	from	Deep	Space	Gateway		


