Get your science on the Moon
January 2018
Get your science on the Moon

January 2018

Sean Mahoney, CEO, Masten Space Systems
Get your science on the Moon

January 2018

Sean Mahoney, CEO, Masten Space Systems
Dr. Clive Neal, Grandpoohbah
Masten Take Aways

1) Talk to Matt Kuhns or myself at this workshop.

2) Two designs available to begin conversation

XL-1
- 100 kg to the surface
- Soon

Xeus
- 1.5 mt to the surface
- Soon after

3) Masten has been reducing risks to your landing for 14 years and hundreds of landing operations.
Mission Driven Design → Capability Driven Design
Reuse changes the development approach
Increase n:
Don’t rely on everything right the first time.
Iterate quickly.
Iterate frequently.
Increase \(n \):
Don’t rely on everything the first time.
Iterate quickly.
Iterate frequently.

Use Flight Opportunities to get hands-on experience for your team and tech before selection and before launch

* or feel free to contract directly, of course
* See Alex from Flight Opportunities (wave)
Save Finger-crossing for the kids soccer game.
Know it works with Reusable Rocket-powered landers

<table>
<thead>
<tr>
<th>XA-0.1-B-1</th>
<th>XA-0.1-E-1</th>
<th>XA-0.1-E-2</th>
<th>XA-0.1-E-4</th>
<th>XA-0.1-E-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-class type A vehicle “Xombie” in service since 2009</td>
<td>E-class type A vehicle “Xoie” in service during 2009</td>
<td>E-class type B vehicle “Xaero” in service between 2010 and 2012</td>
<td>E-class type B vehicle “XaeroB” entered test qualification service in 2014</td>
<td>E-class type C vehicle “Xodiac” entered test qualification service in 2015</td>
</tr>
</tbody>
</table>

5 Reusable Lander Vehicles Demonstrated

400+ Flights · Multiple Flights per Day · Small Team Operation
Robust Lunar Delivery For Customer Payloads

Design supported by NASA Lunar Catalyst Program

Storable non-cryogenic fuels remove thermal roll during transit

Detailed design across all aspects of system
- Leverages Masten technology for engines and controls
- Uses unique proprietary new green/non-toxic propellant
- Enables a wide variety of potential missions

XL-1: Efficient Lunar Lander
XL-1 design Overview

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload Mass</td>
<td>100.0 kg</td>
</tr>
<tr>
<td>Dry Mass</td>
<td>465.0 kg</td>
</tr>
<tr>
<td>GLOM</td>
<td>2,079.0 kg</td>
</tr>
<tr>
<td>Landed Mass</td>
<td>506.3 kg</td>
</tr>
</tbody>
</table>

- Max Height: 2.02 m
- Ground Clearance: 0.45 m
- Lunar Surface: 0 m
- Length: 2.98 m
- Height: 3.56 m
Heavy Lift to Lunar Surface

• Mission kit to land large mass (~1.5 mt)
• Innovative Dual Thrust Axis design
• Proven Masten technology for pinpoint EDL targeting

Dual Thrust-Axis Advantages:
• Crew and cargo closer to surface
• Land on steeper slopes
• Improved operability and reliability
• Higher mass fraction
Masten Space Systems
Lunar Delivery Services

Sean Mahoney
smahoney@masten.aero

Matt Kuhns
mkuhns@masten.aero
Cislunar Ecosystem Needs Full Solution

There is a need for connection between large infrastructure and the direct, disparate users.

There is a need in space for end point transportation.

Masten: Space’s Last Mile Company

Applications
- Tourism
- Mining/extraction
- Manufacturing
- Science
- Entertainment
- Settlement

Out of Masten Scope (Infrastructure)

Out of Masten Scope (Customers)

Masten Scope
- Design & Test
- Propulsion Control Systems
- Operations

Blue Origin
- Industry in space

ESA
- Moon Village

ULA
- Cislunar 1000

NASA
- Return to Moon, Journey to Mars

SpaceX
- Mars Vision